Clinical Prognosis Evaluation of Covid-19 Patients: an Interpretable Hybrid Machine Learning Approach
dc.authorid | 260725 | en_US |
dc.contributor.author | Aktan, Çağdaş | |
dc.contributor.author | .;, ve diğer | |
dc.date.accessioned | 2021-12-23T12:22:34Z | |
dc.date.available | 2021-12-23T12:22:34Z | |
dc.date.issued | 2021 | |
dc.department | İstanbul Beykent Üniversitesi | en_US |
dc.description.abstract | This retrospective cohort study deals with evaluating severity of COVID-19 cases on the first symptoms and blood-test results of infected patients admitted to Emergency Department of Koc University Hospital (Istanbul, Turkey). To figure out remarkable hematological characteristics and risk factors in the prognosis evaluation of COVID-19 cases, the hybrid machine learning (ML) approaches integrated with feature selection procedure based Genetic Algorithms and information complexity were used in addition to the multivariate statistical analysis. Specifically, COVID-19 dataset includes demographic features, symptoms, blood test results and disease histories of total 166 inpatients with different age and gender groups. Analysis results point out that the hybrid ML methods has brought out potential risk factors on the severity of COVID-19 cases and their impacts on the prognosis evaluation, accurately. | en_US |
dc.identifier.citation | Current Research in Translational Medicine 70 (2022) 103319 | en_US |
dc.identifier.doi | 10.1016/j.retram.2021.103319 | |
dc.identifier.issn | 2073-8994 | |
dc.identifier.pmid | 34768217 | en_US |
dc.identifier.scopus | 2-s2.0-85118772867 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.retram.2021.103319 | |
dc.identifier.wos | WOS:000854000600003 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.subject | Artificial intelligence | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | Clinical prognosis | en_US |
dc.subject | Feature selection | en_US |
dc.subject | ICOMP | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Severity of COVID-19 | en_US |
dc.title | Clinical Prognosis Evaluation of Covid-19 Patients: an Interpretable Hybrid Machine Learning Approach | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 49 Clinical prognosis evaluation of COVID-19 patients An interpretable hybrid machine learning approach.pdf
- Boyut:
- 1.52 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.44 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: