Analyzing Online Shopping Behaviors via a new Data-Driven Hesitant Fuzzy Approach

dc.authorid321599en_US
dc.authorid199421en_US
dc.contributor.authorBudak, Muhammed Çağrı
dc.contributor.authorOnar, Sezi Cevik
dc.date.accessioned2021-09-06T13:08:50Z
dc.date.available2021-09-06T13:08:50Z
dc.date.issued2021
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractUnderstanding online shopping behaviors is crucial for the survival of many firms. Modeling the customers' online shopping behaviors is a complex problem that involves uncertainty, hesitancy, and imprecision since different generations have different attitudes toward e-commerce. In this study, a new data-driven, hesitant fuzzy cognitive map methodology evaluates the different generations', namely, generations X, Y, and Z, online shopping behaviors. The model is constructed based on the technology acceptance model, diffusion of innovation theory, and extended unified theory of acceptance and technology use. The relations and the level of relations among the parameters are defined by using a data-driven approach. Utilizing a statistical approach enables us to define the relations among the parameters and customer behaviors better. The study's objective is to reveal the impact of different conditions on the customers' online shopping behaviors and help the decision-makers with their online shopping strategies. The statistical model has limitations since it does not reflect the hesitancy and imprecision inherent in customers' online shopping behaviors. We utilize hesitant fuzzy cognitive maps to reflect uncertainty and hesitancy and analyze different scenarios with this map. Different cognitive maps and three scenarios are developed for every generation type, and the customer behaviors are observed through these hesitant fuzzy cognitive maps. (C) 2021 The Authors. Published by Atlantis Press B.V.en_US
dc.identifier.citationInternational Journal of Computational Intelligence Systems Vol. 14(1), 2021, pp. 847–858en_US
dc.identifier.doi10.2991/ijcis.d.210205.003
dc.identifier.issn1029-8479
dc.identifier.scopus2-s2.0-85107896583en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.2991/ijcis.d.210205.003
dc.identifier.wosWOS:000657681900001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherAtlantis Press [Commercial Publisher]en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.subjectOnline shoppingen_US
dc.subjectCustomer behavioren_US
dc.subjectGeneration cohorten_US
dc.subjectHesitant fuzzy cognitive mappingen_US
dc.subjectPartial least squares structural equation modelingen_US
dc.titleAnalyzing Online Shopping Behaviors via a new Data-Driven Hesitant Fuzzy Approachen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
24 Analyzing Online Shopping Behaviors via a new Data-Driven Hesitant Fuzzy Approach.pdf
Boyut:
4.44 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: