A capacity curve model for confined clay brick infills

dc.contributor.authorOzkaynak, H.
dc.contributor.authorSurmeli, M.
dc.contributor.authorYuksel, E.
dc.date.accessioned2024-03-13T10:30:45Z
dc.date.available2024-03-13T10:30:45Z
dc.date.issued2016
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractExperimental studies have proven that clay brick infills, confined with carbon-fiber-reinforced polymers (CFRP) in reinforced concrete (RC) frames, have some advantages in terms of stiffness, strength, energy dissipation capability and damage intensity. Owing to these advantages, existing infill walls in RC frames may be retrofitted with CFRP strips, especially in low-rise buildings in earthquake-prone areas. There is a gap in the literature concerning their behavior model, for use in structural analysis. A piecewise linear capacity curve model called DUVAR'' is proposed here, which estimates the envelope of force-vs.-displacement hysteresis, depending on the data compiled from the literature and the completed experimental studies. A nonlinear shear spring element is utilized in the model to represent the bare and retrofitted infills. The ultimate shear strength and the corresponding displacement, the ratio of cracking stiffness to initial stiffness, the ratio of ultimate strength to cracking strength, and the ductility ratio are the five key parameters of the model. The model is validated against the experimental results of two sovereign studies. Finally, the model is employed in the performance evaluation of an existing three-story RC building to exemplify its straightforward application.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [106M050]; Istanbul Technical University (ITU) Research Funds [31966]en_US
dc.description.sponsorshipThis paper was sponsored by research projects 106M050 of the Scientific and Technological Research Council of Turkey (TUBITAK) and 31966 of Istanbul Technical University (ITU) Research Funds. The contributions of Prof. Dr. Oral Buyukozturk, Assoc. Prof. Dr. Cem Yalcin and Ass. Prof. Dr. A. Anil Dindar to this paper are gratefully acknowledged.en_US
dc.identifier.doi10.1007/s10518-015-9855-6
dc.identifier.endpage918en_US
dc.identifier.issn1570-761X
dc.identifier.issn1573-1456
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-84957843986en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage889en_US
dc.identifier.urihttps://doi.org/10.1007/s10518-015-9855-6
dc.identifier.urihttps://hdl.handle.net/20.500.12662/3526
dc.identifier.volume14en_US
dc.identifier.wosWOS:000372113400012en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofBulletin Of Earthquake Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnalytical modelingen_US
dc.subjectCFRP retrofittingen_US
dc.subjectInfill wallen_US
dc.subjectInfilled frameen_US
dc.subjectShear springen_US
dc.titleA capacity curve model for confined clay brick infillsen_US
dc.typeArticleen_US

Dosyalar