Multivariate Techniques for Energy Reconstruction in Highly Granular Calorimeters
dc.contributor.author | Bilki, Burak | |
dc.date.accessioned | 2024-03-13T10:30:31Z | |
dc.date.available | 2024-03-13T10:30:31Z | |
dc.date.issued | 2016 | |
dc.department | İstanbul Beykent Üniversitesi | en_US |
dc.description | IEEE Nuclear Science Symposium / Medical Imaging Conference / Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD) -- OCT 29-NOV 06, 2016 -- Strasbourg, FRANCE | en_US |
dc.description.abstract | The overall trend in calorimetry is towards high granularity, both laterally and longitudinally. This trend is a requirement for the full exploitation of the Particle Flow Algorithms, which reconstruct individual particles using the sub detector that provides the best resolution for this specific particle. The increased level of detail in the event topologies due to higher segmentation of the calorimeter provides additional handles for energy reconstruction. Here, the power of using multivariate statistical techniques using various topological variables in the reconstruction of the energy of single particles in highly granular calorimeters is demonstrated. | en_US |
dc.description.sponsorship | IEEE | en_US |
dc.identifier.isbn | 978-1-5090-1642-6 | |
dc.identifier.issn | 1095-7863 | |
dc.identifier.scopus | 2-s2.0-85041710321 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12662/3403 | |
dc.identifier.wos | WOS:000432419500474 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 2016 Ieee Nuclear Science Symposium, Medical Imaging Conference And Room-Temperature Semiconductor Detector Workshop (Nss/Mic/Rtsd) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Multivariate Techniques for Energy Reconstruction in Highly Granular Calorimeters | en_US |
dc.type | Conference Object | en_US |