Deep learning prediction of gamma-ray-attenuation behavior of KNN-LMN ceramics
dc.contributor.author | Malidarre, Roya Boodaghi | |
dc.contributor.author | Arslankaya, Seher | |
dc.contributor.author | Nar, Melek | |
dc.contributor.author | Kirelli, Yasin | |
dc.contributor.author | Erdamar, Isk Yesim Dicle | |
dc.contributor.author | Karpuz, Nurdan | |
dc.contributor.author | Dogan, Serap Ozhan | |
dc.date.accessioned | 2024-03-13T10:33:06Z | |
dc.date.available | 2024-03-13T10:33:06Z | |
dc.date.issued | 2022 | |
dc.department | İstanbul Beykent Üniversitesi | en_US |
dc.description.abstract | The significance and novelty of the present work is the preparation of non-lead ceramics with the general formula of (1 - x)K0.5Na0.5NbO3-xLaMn(0.5)Ni(0.5)O(3) (KNN-LMN) with different values of x (0 < x < 20) (mol%) to examine the shielding qualities of the KNN-LMN ceramics. This is done by carrying out Phy-X/PSD calculation and predicting the attenuation behavior of the samples by utilizing the deep learning (DL) algorithm. From the attained results, it is seen that the higher the x (concentration of LMN in the KNN-LMN lead-free ceramics), the better the shielding proficiency observed in terms of gamma-shielding performance for the chosen KNN-LMN-based lead-free ceramics. In all sections, good agreement is observed between Phy-X/PSD results and DL predictions. | en_US |
dc.identifier.doi | 10.1680/jemmr.22.00012 | |
dc.identifier.endpage | 282 | en_US |
dc.identifier.issn | 2046-0147 | |
dc.identifier.issn | 2046-0155 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85129752416 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 276 | en_US |
dc.identifier.uri | https://doi.org/10.1680/jemmr.22.00012 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12662/3770 | |
dc.identifier.volume | 11 | en_US |
dc.identifier.wos | WOS:000981650500008 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ice Publishing | en_US |
dc.relation.ispartof | Emerging Materials Research | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | deep learning | en_US |
dc.subject | Phy-X | en_US |
dc.subject | PSD simulation | en_US |
dc.subject | radiation shielding | en_US |
dc.title | Deep learning prediction of gamma-ray-attenuation behavior of KNN-LMN ceramics | en_US |
dc.type | Article | en_US |