Application of Gegenbauer Polynomials with Two Variables to Bi-univalency of Generalized Discrete Probability Distribution Via Zero-Truncated Poisson Distribution Series
| dc.contributor.author | Awolere, Tunji Ibrahim | |
| dc.contributor.author | Oladipo, Abiodun Tinuoye | |
| dc.contributor.author | Altinkaya, Sahsene | |
| dc.date.accessioned | 2025-03-09T10:48:39Z | |
| dc.date.available | 2025-03-09T10:48:39Z | |
| dc.date.issued | 2024 | |
| dc.department | İstanbul Beykent Üniversitesi | |
| dc.description.abstract | The present study is unique in exploring bi-univalent functions, which has recently garnered attention from many researchers in Geometric Function Theory (GFT). The uniqueness lies in utilizing a generalized discrete probability distribution and a zero-truncated Poisson distribution combined with generalized Gegenbauer polynomials featuring two variables. We aim to obtain coefficient bounds, the classical Fekete-Szego inequality, and Hankel and Toeplitz determinants to generalize the probability of a gambler's ruin. Additionally, using the defined bi-univalent function classes contributes to the uniqueness of the obtained results. | |
| dc.identifier.doi | 10.22130/scma.2024.1987464.1235 | |
| dc.identifier.issn | 2423-3900 | |
| dc.identifier.issue | 3 | |
| dc.identifier.scopus | 2-s2.0-85198728461 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.uri | https://doi.org/10.22130/scma.2024.1987464.1235 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12662/4631 | |
| dc.identifier.volume | 21 | |
| dc.identifier.wos | WOS:001272216000005 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Univ Maragheh | |
| dc.relation.ispartof | Sahand Communications in Mathematical Analysis | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WOS_20250310 | |
| dc.subject | Bi-univalent function | |
| dc.subject | Gegenbauer polynomials | |
| dc.subject | Discrete probability | |
| dc.subject | Hankel and Toeplitz determinants | |
| dc.subject | Zero-truncated-Poisson series | |
| dc.title | Application of Gegenbauer Polynomials with Two Variables to Bi-univalency of Generalized Discrete Probability Distribution Via Zero-Truncated Poisson Distribution Series | |
| dc.type | Article |












