Unbiased Estimation For Logistic Regression

dc.authoridTR46651en_US
dc.contributor.authorEyduran, Ecevit
dc.contributor.authorOzdemir, Taner
dc.date.accessioned2015-04-03T07:26:49Z
dc.date.available2015-04-03T07:26:49Z
dc.date.issued2007
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractThe aim of this study was to determine and reduce the problems that have been encountered in sparse data or separation. For this aim, Firth's Modified Score Procedure, which is more superior to Maximum Likelihood Estimation Method, were performed on a data set regarding psychology. Under some circumstances (sparse data or separation), maximum likelihood estimates of parameters are biased or infinite estimates. Using Firth's Modified Score Procedure or (Firth Type Estimates) may be thought as an originally approach which eliminates or shrinks the first order bias. As a result, it has been suggested in this article that Firth Type Estimates be a reliable method for eliminating separation.en_US
dc.identifier.citationJournal of Science and Technology 1 (2), 2007, 245-251tr_TR
dc.identifier.issn1307-3818
dc.language.isoenen_US
dc.publisherBeykent Üniversitesitr_TR
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.subjectBias shrinkingtr_TR
dc.subjectFirth Type Estimationtr_TR
dc.subjectSparse datatr_TR
dc.subjectSeparationtr_TR
dc.titleUnbiased Estimation For Logistic Regressionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Unbiased Estimation For Logistic Regression.pdf
Boyut:
3.13 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.43 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: