Volume IV The DUNE Far Detector Single-Phase Technology

dc.authorid249433en_US
dc.contributor.authorBilki, Burak
dc.contributor.author.;, ve diğer
dc.date.accessioned2021-09-06T13:09:53Z
dc.date.available2021-09-06T13:09:53Z
dc.date.issued2021
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. Central to achieving DUNE's physics program is a far detector that combines the many tens-of-kiloton fiducial mass necessary for rare event searches with sub-centimeter spatial resolution in its ability to image those events, allowing identification of the physics signatures among the numerous backgrounds. In the single-phase liquid argon time-projection chamber (LArTPC) technology, ionization charges drift horizontally in the liquid argon under the influence of an electric field towards a vertical anode, where they are read out with fine granularity. A photon detection system supplements the TPC, directly enhancing physics capabilities for all three DUNE physics drivers and opening up prospects for further physics explorations. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume IV presents an overview of the basic operating principles of a single-phase LArTPC, followed by a description of the DUNE implementation. Each of the subsystems is described in detail, connecting the high-level design requirements and decisions to the overriding physics goals of DUNEen_US
dc.identifier.citationJournal Of Instrumentation Volume 15 Issue 8 Article Number T08010, 2021en_US
dc.identifier.doi10.1088/1748-0221/15/08/T08010
dc.identifier.issn1029-8479
dc.identifier.scopus2-s2.0-85095609051en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1088/1748-0221/15/08/T08010
dc.identifier.wosWOS:000635160500002en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIOP Publishing [Society Publisher]en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.subjectLıquıd Argonfreeen_US
dc.subjectElectronsen_US
dc.titleVolume IV The DUNE Far Detector Single-Phase Technologyen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
39 Volume IV. The DUNE far detector single-phase technology.pdf
Boyut:
130.52 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: