On split-octonionic curves

dc.authoridAKBIYIK, Mucahit/0000-0002-0256-1472
dc.contributor.authorAlo, Jeta
dc.contributor.authorAkbiyik, Mucahit
dc.date.accessioned2025-03-09T10:48:52Z
dc.date.available2025-03-09T10:48:52Z
dc.date.issued2024
dc.departmentİstanbul Beykent Üniversitesi
dc.description.abstractIn this paper, we first define the vector product in Minkowski space $\mathbb{R}_{4}<^>{7}$ , which is identified with the space of spatial split-octonions. Next, we derive the $G_{2}-$ frame formulae for a seven dimensional Minkowski curve by using the spatial split-octonions and the vector product. We show that Frenet-Serret formulas are satisfied for a spatial split octonionic curve. We obtain the congruence of two spatial split octonionic curves and give relationship between the $G_{2}-$ frame and Frenet-Serret frame. Furthermore, we present the Frenet-Serret frame with split octonions in $\mathbb{R}_{4}<^>{8}$ . Finally, we give illustrative examples with Matlab codes.
dc.description.sponsorshipIstanbul Beykent University Scientific Research Projects Coordination Unit [2023- 24-BAP-01, 2024]
dc.description.sponsorshipThis research has been supported by Istanbul Beykent University Scientific Research Projects Coordination Unit. Project Number: 2023- 24-BAP-01, 2024.
dc.identifier.doi10.1093/jigpal/jzae039
dc.identifier.issn1367-0751
dc.identifier.issn1368-9894
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1093/jigpal/jzae039
dc.identifier.urihttps://hdl.handle.net/20.500.12662/4678
dc.identifier.wosWOS:001193084400001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherOxford Univ Press
dc.relation.ispartofLogic Journal of the Igpl
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WOS_20250310
dc.subject53A35
dc.subject11R52
dc.subject14H50
dc.titleOn split-octonionic curves
dc.typeArticle

Dosyalar