Sepsis Prediction by Using a Hybrid Metaheuristic Algorithm: A Novel Approach for Optimizing Deep Neural Networks

dc.contributor.authorKaya, Umut
dc.contributor.authorYilmaz, Atinc
dc.contributor.authorAsar, Sinan
dc.date.accessioned2024-03-13T10:33:17Z
dc.date.available2024-03-13T10:33:17Z
dc.date.issued2023
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractThe early diagnosis of sepsis reduces the risk of the patient's death. Gradient-based algorithms are applied to the neural network models used in the estimation of sepsis in the literature. However, these algorithms become stuck at the local minimum in solution space. In recent years, swarm intelligence and an evolutionary approach have shown proper results. In this study, a novel hybrid metaheuristic algorithm was proposed for optimization with regard to the weights of the deep neural network and applied for the early diagnosis of sepsis. The proposed algorithm aims to reach the global minimum with a local search strategy capable of exploring and exploiting particles in Particle Swarm Optimization (PSO) and using the mental search operator of the Human Mental Search algorithm (HMS). The benchmark functions utilized to compare the performance of HMS, PSO, and HMS-PSO revealed that the proposed approach is more reliable, durable, and adjustable than other applied algorithms. HMS-PSO is integrated with a deep neural network (HMS-PSO-DNN). The study focused on predicting sepsis with HMS-PSO-DNN, utilizing a dataset of 640 patients aged 18 to 60. The HMS-PSO-DNN model gave a better mean squared error (MSE) result than other algorithms in terms of accuracy, robustness, and performance. We obtained the MSE value of 0.22 with 30 independent runs.en_US
dc.identifier.doi10.3390/diagnostics13122023
dc.identifier.issn2075-4418
dc.identifier.issue12en_US
dc.identifier.pmid37370918en_US
dc.identifier.scopus2-s2.0-85163967670en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.3390/diagnostics13122023
dc.identifier.urihttps://hdl.handle.net/20.500.12662/3848
dc.identifier.volume13en_US
dc.identifier.wosWOS:001019680300001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofDiagnosticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectartificial intelligenceen_US
dc.subjectsepsisen_US
dc.subjectdeep neural networken_US
dc.subjectdiagnosisen_US
dc.titleSepsis Prediction by Using a Hybrid Metaheuristic Algorithm: A Novel Approach for Optimizing Deep Neural Networksen_US
dc.typeArticleen_US

Dosyalar