Design of a fuzzy robust-adaptive control law for active suspension systems

Küçük Resim Yok



Dergi Başlığı

Dergi ISSN

Cilt Başlığı


Springer India

Erişim Hakkı



This paper outlines a new approach in control of active vibration systems to make the system robust to parametric uncertainties, unmodeled dynamic effects and external disturbances. Namely, it is aimed to ensure robustness of the system towards all kind of disturbances such as road surface inputs and unexpected system parameter changes. So, a new robust-adaptive controller is designed as a vibration isolator and then applied on a full car active suspension system to improve the ride comfort of a vehicle in the presence of structured parameter uncertainties and unstructured unknown parameters or unmodeled dynamics. For this purpose, new parametric uncertainty upper bound adaptation algorithm is developed to isolate any platform from vibrations. Using adaptive laws, the controller can operate properly under changing conditions. The robustness of controller is also ensured by robust control law. This new approach represents a groundbreaking solution to eliminate any disturbance on a vehicle. Stability of the system is guaranteed by using Lyapunov theory, thus uniform boundedness error convergence is achieved. Afterwards, fuzzy logic controller is used to achieve the optimum values of controller gains. Also, comparative numerical solution using a fuzzy logic controlled suspension is performed on the same full-car model, both in time and frequency domain since classical FLC is an effective control method for active suspensions. At the end, it has been verified that the designed fuzzy robust-adaptive controller improves ride comfort more successfully than fuzzy logic one.


Anahtar Kelimeler

Fuzzy logic, adaptive controller, robust controller, Lyapunov stability, active suspensions


Sadhana-Academy Proceedings In Engineering Sciences

WoS Q Değeri


Scopus Q Değeri