Regenerative Supply Chain Through Digitalization in Diary
dc.contributor.author | Sarvari, Peiman Alipour | |
dc.contributor.author | Martin, Sebastien-Augustin | |
dc.contributor.author | Baskurt, Gulcan | |
dc.contributor.author | Nozari, Mohammad | |
dc.contributor.author | Khadraoui, Djamel | |
dc.date.accessioned | 2024-03-13T10:30:31Z | |
dc.date.available | 2024-03-13T10:30:31Z | |
dc.date.issued | 2022 | |
dc.department | İstanbul Beykent Üniversitesi | en_US |
dc.description | Global Joint Conference on Industrial Engineering and Its Application Areas (GJCIE) -- AUG 14-15, 2020 -- ELECTR NETWORK | en_US |
dc.description.abstract | Globally, enterprises are leveraging social media to promote their brands, monitor consumer trends, research new product ideas, drive business growth, and improve business processes. Integrating social media into existing supply chain networks is essential to provide instant access to real user data. This study defines tailored metrics by examining the current supply chain considering the data gathered from social media in order to have a re-designed supply chain based on the requirements defined by end-users alongside utilizing organizations' strategy, technology, process, and evaluation metrics. The target is to define a framework to take full advantage of intelligent automation in retail and consumer feedback for creating efficiency and creativity. As a case study, this study introduces a social data-driven causal analytics-based methodology that reflects Tweeter data for diagnosing supply chain management issues and determining its capabilities in a milk products company in Luxembourg. | en_US |
dc.description.sponsorship | LC Waikiki,Elginkan Fdn,Entertech | en_US |
dc.identifier.doi | 10.1007/978-3-030-76724-2_28 | |
dc.identifier.endpage | 389 | en_US |
dc.identifier.isbn | 978-3-030-76724-2 | |
dc.identifier.isbn | 978-3-030-76723-5 | |
dc.identifier.issn | 2198-0772 | |
dc.identifier.startpage | 377 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-76724-2_28 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12662/3398 | |
dc.identifier.wos | WOS:000759584900028 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer International Publishing Ag | en_US |
dc.relation.ispartof | Industrial Engineering In The Internet-Of-Things World, Gjcie 2020 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Big data | en_US |
dc.subject | Natural language processing | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Supply chain management | en_US |
dc.subject | Sentiment analysis | en_US |
dc.subject | Agro-food supply chain | en_US |
dc.title | Regenerative Supply Chain Through Digitalization in Diary | en_US |
dc.type | Conference Object | en_US |