Conformally Osserman Lorentzian manifolds satisfying a certain condition on the Ricci tensor

dc.contributor.authorErdo?an M.
dc.contributor.authorAlo J.
dc.contributor.authorPirinçci B.
dc.date.accessioned2024-03-13T10:01:29Z
dc.date.available2024-03-13T10:01:29Z
dc.date.issued2011
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractLet (Mn 1, g), n ? 4, be an n-dimensional homogeneous Lorentzian manifold of which the Jacobi operator associated to the Weyl conformal curvature tensor has constant eigenvalues on the bundle of unit timelike (spacelike) tangent vectors (known as conformally Osserman Lorentzian manifolds). Then Mn 1 is a conformally Osserman Lorentzian manifold if and only if Mn 1 is a conformally flat manifold, (Blazic, 2005). In this paper, by utilizing this equivalence and the similar arguments in Erdogan and Ikawa (1995) and Sekigawa and Takagi (1971), we classify locally conformally flat homogeneous Lorentzian manifolds and, equivalently, as well as conformally Osserman Lorentzian manifolds which satisfy a condition on the Ricci tensor. ©2011 Academic Journals.en_US
dc.identifier.endpage800en_US
dc.identifier.issn1992-1950
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-79957445759en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage796en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12662/3223
dc.identifier.volume6en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Physical Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectConformal Jacobi operatoren_US
dc.subjectConformally manifolden_US
dc.subjectConformally Osserman manifolden_US
dc.subjectWeyl conformal tensoren_US
dc.titleConformally Osserman Lorentzian manifolds satisfying a certain condition on the Ricci tensoren_US
dc.typeArticleen_US

Dosyalar