An attribute-centre based decision tree classification algorithm

dc.contributor.authorSilahtaro?lu G.
dc.date.accessioned2024-03-13T10:01:30Z
dc.date.available2024-03-13T10:01:30Z
dc.date.issued2009
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractDecision tree algorithms have very important place at classification model of data mining. In literature, algorithms use entropy concept or gini index to form the tree. The shape of the classes and their closeness to each other some of the factors that affect the performance of the algorithm. In this paper we introduce a new decision tree algorithm which employs data (attribute) folding method and variation of the class variables over the branches to be created. A comparative performance analysis has been held between the proposed algorithm and C4.5.en_US
dc.identifier.endpage306en_US
dc.identifier.issn2010-376X
dc.identifier.scopus2-s2.0-78651560851en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage302en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12662/3230
dc.identifier.volume56en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofWorld Academy of Science, Engineering and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectDecision treeen_US
dc.subjectEntropyen_US
dc.subjectGinien_US
dc.subjectPruningen_US
dc.subjectSpliten_US
dc.titleAn attribute-centre based decision tree classification algorithmen_US
dc.typeArticleen_US

Dosyalar