Constitutive Model Characterization of the RC Columns Using Energy Terms

dc.contributor.authorGüngör, Bilal
dc.contributor.authorHasanoğlu, Serkan
dc.contributor.authorÇalım, Furkan
dc.contributor.authorMuderrisoglu, Ziya
dc.contributor.authorDindar, Ahmet Anıl
dc.contributor.authorBozer, Ali
dc.contributor.authorÖzkaynak, Hasan
dc.date.accessioned2025-03-09T10:57:46Z
dc.date.available2025-03-09T10:57:46Z
dc.date.issued2023
dc.departmentİstanbul Beykent Üniversitesi
dc.description2nd International Workshop on Energy-Based Seismic Engineering, IWEBSE 2023 -- 3 July 2023 through 6 July 2023 -- Porto -- 296999
dc.description.abstractThe accuracy level of predicting the hysteretic response of structural members is crucial in energy-based design procedures. Probabilistic methodologies are generally implemented to consider the uncertainties related to demand and capacity-based parameters in structural analyses. Accordingly, implementing the large variability on critical parameters that affect the accuracy level of predicted response is still a challenging issue. This proceeding focuses on an improved calibration methodology proposed to select the optimal analytical modeling parameters that takes into account the widely-used modeling techniques. The input data used for the calibration procedure is compiled from quasi-static experiments conducted on reinforced concrete column members exist in the literature. The finite element models of 62 test units are established to predict the energy dissipation characteristics by utilizing a set of modeling assumptions. Here, the optimal ranges of critical analytical model parameters are evaluated to increase the accuracy level in predicting the target energy dissipation capacity of a member. A comparison between the predicted responses for default and the calibrated model parameters is revealed. Results provide a basis for an efficient calibration methodology to get more accurate capacity predictions. Since the predictions for the damage level of structural members is directly related to the accuracy level of an established analytical model, this attempt is expected to have a considerable impact on the energy-based design of structural members. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
dc.identifier.doi10.1007/978-3-031-36562-1_20
dc.identifier.endpage268
dc.identifier.isbn978-303136561-4
dc.identifier.issn2366-2557
dc.identifier.scopus2-s2.0-85164931658
dc.identifier.scopusqualityQ4
dc.identifier.startpage258
dc.identifier.urihttps://doi.org/10.1007/978-3-031-36562-1_20
dc.identifier.urihttps://hdl.handle.net/20.500.12662/4983
dc.identifier.volume236 LNCE
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofLecture Notes in Civil Engineering
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20250310
dc.subjectCalibration of Model Parameters
dc.subjectEnergy Dissipation Capacity
dc.subjectEnergy-Based Design Procedures
dc.subjectModeling Uncertainties
dc.titleConstitutive Model Characterization of the RC Columns Using Energy Terms
dc.typeConference Object

Dosyalar