Autoencoder Guided Low-Rank Approximation Approach for Clutter Removal in GPR Images
dc.contributor.author | Kayacan, Yavuz Emre | |
dc.contributor.author | Erer, Isin | |
dc.date.accessioned | 2025-03-09T10:57:33Z | |
dc.date.available | 2025-03-09T10:57:33Z | |
dc.date.issued | 2024 | |
dc.department | İstanbul Beykent Üniversitesi | |
dc.description | 47th International Conference on Telecommunications and Signal Processing, TSP 2024 -- 10 July 2024 through 12 July 2024 -- Virtual, Online -- 201450 | |
dc.description.abstract | The performance of low-rank and sparse decomposition (LRSD) based clutter removal methods which are widely used in GPR systems depends heavily on the regularization parameter. This study proposes a A parameter-free low-rank approach. The low-rank component recovered by an autoencoder (AE) network is subtracted from the raw image to provide a clutter-free image. Simulation and experimental results validate the superiority of the proposed method compared to the low-rank approach Nonnegative Matrix Factorization (NMF) as well as other LRSD methods: Robust Principal Component Analysis (RPCA), Robust NMF (RNMF), and Robust Autoencoder (RAE). © 2024 IEEE. | |
dc.description.sponsorship | Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK, (120E234) | |
dc.identifier.doi | 10.1109/TSP63128.2024.10605982 | |
dc.identifier.endpage | 335 | |
dc.identifier.isbn | 979-835036559-7 | |
dc.identifier.scopus | 2-s2.0-85201159319 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 332 | |
dc.identifier.uri | https://doi.org/10.1109/TSP63128.2024.10605982 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12662/4911 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.relation.ispartof | 2024 47th International Conference on Telecommunications and Signal Processing, TSP 2024 | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_Scopus_20250310 | |
dc.subject | autoencoder | |
dc.subject | clutter removal | |
dc.subject | Ground Penetrating Radar (GPR) | |
dc.subject | low-rank approximation | |
dc.subject | nonnegative matrix factorization (NMF) | |
dc.title | Autoencoder Guided Low-Rank Approximation Approach for Clutter Removal in GPR Images | |
dc.type | Conference Object |