Clustering Categorical Data Using Hierarchies (CLUCDUH)

dc.contributor.authorSilahtaro?lu G.
dc.date.accessioned2024-03-13T10:01:30Z
dc.date.available2024-03-13T10:01:30Z
dc.date.issued2009
dc.departmentİstanbul Beykent Üniversitesien_US
dc.description.abstractClustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n).en_US
dc.identifier.endpage339en_US
dc.identifier.issn2010-376X
dc.identifier.scopus2-s2.0-78651576621en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage334en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12662/3229
dc.identifier.volume56en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofWorld Academy of Science, Engineering and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClusteringen_US
dc.subjectEntropyen_US
dc.subjectGinien_US
dc.subjectPruningen_US
dc.subjectSpliten_US
dc.subjectTreeen_US
dc.titleClustering Categorical Data Using Hierarchies (CLUCDUH)en_US
dc.typeArticleen_US

Dosyalar