Clustering Categorical Data Using Hierarchies (CLUCDUH)
dc.contributor.author | Silahtaro?lu G. | |
dc.date.accessioned | 2024-03-13T10:01:30Z | |
dc.date.available | 2024-03-13T10:01:30Z | |
dc.date.issued | 2009 | |
dc.department | İstanbul Beykent Üniversitesi | en_US |
dc.description.abstract | Clustering large populations is an important problem when the data contain noise and different shapes. A good clustering algorithm or approach should be efficient enough to detect clusters sensitively. Besides space complexity, time complexity also gains importance as the size grows. Using hierarchies we developed a new algorithm to split attributes according to the values they have and choosing the dimension for splitting so as to divide the database roughly into equal parts as much as possible. At each node we calculate some certain descriptive statistical features of the data which reside and by pruning we generate the natural clusters with a complexity of O(n). | en_US |
dc.identifier.endpage | 339 | en_US |
dc.identifier.issn | 2010-376X | |
dc.identifier.scopus | 2-s2.0-78651576621 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 334 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12662/3229 | |
dc.identifier.volume | 56 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | World Academy of Science, Engineering and Technology | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Clustering | en_US |
dc.subject | Entropy | en_US |
dc.subject | Gini | en_US |
dc.subject | Pruning | en_US |
dc.subject | Split | en_US |
dc.subject | Tree | en_US |
dc.title | Clustering Categorical Data Using Hierarchies (CLUCDUH) | en_US |
dc.type | Article | en_US |