Yazar "Nematzadeh, Sajjad" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Improving the performance of hierarchical wireless sensor networks using the metaheuristic algorithms: efficient cluster head selection(Emerald Group Publishing Ltd, 2021) Kiani, Farzad; Seyyedabbasi, Amir; Nematzadeh, SajjadPurpose Efficient resource utilization in wireless sensor networks is an important issue. Clustering structure has an important effect on the efficient use of energy, which is one of the most critical resources. However, it is extremely vital to choose efficient and suitable cluster head (CH) elements in these structures to harness their benefits. Selecting appropriate CHs and finding optimal coefficients for each parameter of a relevant fitness function in CHs election is a non-deterministic polynomial-time (NP-hard) problem that requires additional processing. Therefore, the purpose of this paper is to propose efficient solutions to achieve the main goal by addressing the related issues. Design/methodology/approach This paper draws inspiration from three metaheuristic-based algorithms; gray wolf optimizer (GWO), incremental GWO and expanded GWO. These methods perform various complex processes very efficiently and much faster. They consist of cluster setup and data transmission phases. The first phase focuses on clusters formation and CHs election, and the second phase tries to find routes for data transmission. The CH selection is obtained using a new fitness function. This function focuses on four parameters, i.e. energy of each node, energy of its neighbors, number of neighbors and its distance from the base station. Findings The results obtained from the proposed methods have been compared with HEEL, EESTDC, iABC and NR-LEACH algorithms and are found to be successful using various analysis parameters. Particularly, I-HEELEx-GWO method has provided the best results. Originality/value This paper proposes three new methods to elect optimal CH that prolong the networks lifetime, save energy, improve overhead along with packet delivery ratio.Öğe In silico design of novel aptamers utilizing a hybrid method of machine learning and genetic algorithm(Springer, 2021) Torkamanian-Afshar, Mahsa; Nematzadeh, Sajjad; Tabarzad, Maryam; Najafi, Ali; Lanjanian, Hossein; Masoudi-Nejad, AliAptamers can be regarded as efficient substitutes for monoclonal antibodies in many diagnostic and therapeutic applications. Due to the tedious and prohibitive nature of SELEX (systematic evolution of ligands by exponential enrichment), the in silico methods have been developed to improve the enrichment processes rate. However, the majority of these methods did not show any effort in designing novel aptamers. Moreover, some target proteins may have not any binding RNA candidates in nature and a reductive mechanism is needed to generate novel aptamer pools among enormous possible combinations of nucleotide acids to be examined in vitro. We have applied a genetic algorithm (GA) with an embedded binding predictor fitness function to in silico design of RNA aptamers. As a case study of this research, all steps were accomplished to generate an aptamer pool against aminopeptidase N (CD13) biomarker. First, the model was developed based on sequential and structural features of known RNA-protein complexes. Then, utilizing RNA sequences involved in complexes with positive prediction results, as the first-generation, novel aptamers were designed and top-ranked sequences were selected. A 76-mer aptamer was identified with the highest fitness value with a 3 to 6 time higher score than parent oligonucleotides. The reliability of obtained sequences was confirmed utilizing docking and molecular dynamic simulation. The proposed method provides an important simplified contribution to the oligonucleotide-aptamer design process. Also, it can be an underlying ground to design novel aptamers against a wide range of biomarkers.Öğe RPINBASE: An online toolbox to extract features for predicting RNA-protein interactions(Academic Press Inc Elsevier Science, 2020) Torkamanian-Afshar, Mahsa; Lanjanian, Hossein; Nematzadeh, Sajjad; Tabarzad, Maryam; Najafi, Ali; Kiani, Farzad; Masoudi-Nejad, AliFeature extraction is one of the most important preprocessing steps in predicting the interactions between RNAs and proteins by applying machine learning approaches. Despite many efforts in this area, still, no suitable structural feature extraction tool has been designed. Therefore, an online toolbox, named RPINBASE which can be applied to different scopes of biological applications, is introduced in this paper. This toolbox employs efficient nested queries that enhance the speed of the requests and produces desired features in the form of positive and negative samples. To show the capabilities of the proposed toolbox, the developed toolbox was investigated in the aptamer design problem, and the obtained results are discussed. RPINBASE is an online toolbox and is accessible at http://rpinbase.com.