Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "N. Ucan, Osman" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Performance Analysis Of Neural Network Handwritten Character Recognition System Using Cnn Edge Detection
    (Beykent Üniversitesi, 2007) Gorgel, Pelin; N. Ucan, Osman
    In this paper we have recognized the nearly 1200 Latin handwritten characters collected from people using artificial neural network. We used backpropagation algorithm for supervised learning. In pre-processing and feature extraction step, normalization and edge detection has been performed. Cellular neural network (CNN) is used for edge detection. CNN are a parallel computing paradigm similar to neural networks, with the difference that communication is allowed between neighbouring units only. In this system we achieved 84.5% recognition accuracy. To reach this percentage it is observed with graphics how input datas, network parametres and training period affect the result. Then the character recognition performance of the network according to changable parameters is analysed. And factors that increase performance of system are determined.

| İstanbul Beykent Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Ayazağa Mahallesi, Sarıyer, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder