Yazar "Mutlu, Yasar" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Erosive-abrasive wear modeling of a water jet pump in a slurry medium(2024) Kosa, Ergin; Mutlu, YasarIn the study, water jet pump transfers the slurry in the well through pipe system to centrifugal pump. Sand-water mixture causes amount of material loss in the water jet pump structure computed by a software program. The purpose of the study is to determine the most critical part in the water jet pump. The wear amount is affected by many parameters such as sand particle diameter, mass flow rate of abrasive and inlet velocity. So, it is investigated that the wear amount on the jet pump is changed according to sand percentage in the well water, inlet velocity and erodent diameter. Mass flow rates of sand have a value of 0.097 kg/s for w.p. % 5, 0.194 kg/s for w.p. % 10, 0.291 kg/s for w.p. % 15 at an inlet velocity of 3.98 m/s. The maximum erosion wear rate is raised from 2.26x10-4 kg/(s m2) to 6.84x10-8 kg/s2m2 for inlet velocities of 1.99 m/s, 3.98 and 7.96 m/s, respectively for the case of weight percentages of %15 in Finnie erosion wear model. Finnie, Mclaury, Generic and Oka erosion models have been compared. It is found that Mclaury’s erosion model demonstrates the highest erosion value of 1.38x10-3 kg/(s m2) for w.p. % 15 at 3.98 m/s inlet velocity for the erodent diameter of 0.0005m in all. It is claimed that erosive wear has been concentrated on the nozzle of the water jet pump. The wear rate can be predicted as straightforwardly for different conditions.Öğe Pressure Drop and Cavitation Optimization of a Relief Valve Featuring Quick Coupling Used in Radar Systems(Springer Heidelberg, 2024) Mutlu, Yasar; Donmez, Aydin Haci; Karadag, Muhammet Ali; Gokluberk, PinarThis extensive study is carried out to minimize the pressure drop of a relief valve featuring quick-releasing coupling used in radar systems. The 3D two-phase computational fluid dynamic (CFD) study is verified with the experiments, and Taguchi's orthogonal method is implemented for pressure drop optimization. Realizable k-epsilon turbulence model with enhanced wall treatment and the Schnerr and Sauer cavitation model are enforced within the numerical study. Four angles-the collet angle, the inlet angle, the plug angle, and the outlet angle-are considered at five levels of variation for the orthogonal optimization process. According to the statistical analysis, two more designs are suggested, and one of them resulted in further improved pressure drop performance. Moreover, the cavitation behavior of the proposed design is compared with the base design through water vapor volume fractions. While the water vapor volume fraction of the base design is 0.0045, no vapor formation is observed in the optimized designs at 20 l/min. The results of the proposed design are also validated by the experiments. The outcomes of the study showed that the inlet angle has a significant effect on the pressure drop phenomenon.