Yazar "Kaya M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of LED Stimulated Recovery of Radiation Damage in Optical Materials(Institute of Electrical and Electronics Engineers Inc., 2021) Sahbaz K.K.; Bilki B.; Dapo H.; Karslioglu G.; Kaya C.; Kaya M.; Tosun M.The radiation damage in the optical active media of collider detectors and beamline instrumentation is an outstanding problem. The exposed doses reach unprecedented levels in some current and projected implementations. In order to mitigate this, the development of optical materials with higher radiation resistance is underway. On the other hand, there is a significant lack of in-situ radiation damage recovery systems, whereas such systems have the potential to increase the useful lifetime of the optical materials considerably. Although it is well-known that stimulating the recovery of radiation damage with LED illumination significantly improves the recovery rate and the ultimate damage, a systematic study of the recovery e.g. as a function of the incident LED light spectra, intensity and exposure duration has not been performed. Here we attempt to do this study and present our first results of recovery from radiation damage under different recovery conditions. © 2021 IEEE.Öğe Systematic Investigation of LED Stimulated Recovery From Radiation-Induced Damage in Optical Materials(Institute of Electrical and Electronics Engineers Inc., 2022) Sahbaz K.K.; Bilki B.; Dapo H.; Karslioglu I.G.; Kaya C.; Kaya M.; Tosun M.The optical materials including scintillators, glasses and crystals are commonly used as active or support media in collider detectors and in beam-lines of various scientific facilities. When subjected to high levels of radiation, the optical materials exhibit loss of transmittance which degrades their overall performance. If the radiation exposure is stopped, the optical materials can gradually recover from radiation damage. The recovery can also be accelerated by LED stimulation, which provides a potential option for in-situ recovery systems from radiation damage in large-scale detector systems. On the other hand, a systematic study of the recovery from radiation damage as a function of the LED stimulation parameters has not been conducted to date. In order to respond to this need, we irradiated soda lime glass samples to 3.5 kGy and 7.0 kGy total doses and inspected their recovery from radiation damage under different LED stimulation conditions for an extended period. Here we report on the irradiation and recovery setups in detail and report on the dynamic recovery from radiation damage for various LED stimulation scenarios. © 2022 IEEE.