Yazar "Celik, Ozer" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Deep Learning Approach to Automatic Tooth Caries Segmentation in Panoramic Radiographs of Children in Primary Dentition, Mixed Dentition, and Permanent Dentition(MDPI, 2024) Asci, Esra; Kilic, Munevver; Celik, Ozer; Cantekin, Kenan; Bircan, Hasan Basri; Bayrakdar, Ibrahim Sevki; Orhan, KaanObjectives: The purpose of this study was to evaluate the effectiveness of dental caries segmentation on the panoramic radiographs taken from children in primary dentition, mixed dentition, and permanent dentition with Artificial Intelligence (AI) models developed using the deep learning method. Methods: This study used 6075 panoramic radiographs taken from children aged between 4 and 14 to develop the AI model. The radiographs included in the study were divided into three groups: primary dentition (n: 1857), mixed dentition (n: 1406), and permanent dentition (n: 2812). The U-Net model implemented with PyTorch library was used for the segmentation of caries lesions. A confusion matrix was used to evaluate model performance. Results: In the primary dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.8525, 0.9128, and 0.8816, respectively. In the mixed dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.7377, 0.9192, and 0.8185, respectively. In the permanent dentition group, the sensitivity, precision, and F1 scores calculated using the confusion matrix were found to be 0.8271, 0.9125, and 0.8677, respectively. In the total group including primary, mixed, and permanent dentition, the sensitivity, precision, and F1 scores calculated using the confusion matrix were 0.8269, 0.9123, and 0.8675, respectively. Conclusions: Deep learning-based AI models are promising tools for the detection and diagnosis of caries in panoramic radiographs taken from children with different dentition.Öğe Tooth numbering with polygonal segmentation on periapical radiographs: an artificial intelligence study(Springer Heidelberg, 2024) Ayyildiz, Halil; Orhan, Mukadder; Bilgir, Elif; Celik, Ozer; Bayrakdar, Ibrahim SevkiObjectivesAccurately identification and tooth numbering on radiographs is essential for any clinicians. The aim of the present study was to validate the hypothesis that Yolov5, a type of artificial intelligence model, can be trained to detect and number teeth in periapical radiographs.Materials and methodsSix thousand four hundred forty six anonymized periapical radiographs without motion-related artifacts were randomly selected from the database. All periapical radiographs in which all boundaries of any tooth could be distinguished were included in the study. The radiographic images used were randomly divided into three groups: 80% training, 10% validation, and 10% testing. The confusion matrix was used to examine model success.ResultsDuring the test phase, 2578 labelings were performed on 644 periapical radiographs. The number of true positive was 2434 (94.4%), false positive was 115 (4.4%), and false negative was 29 (1.2%). The recall, precision, and F1 scores were 0.9882, 0.9548, and 0.9712, respectively. Moreover, the model yielded an area under curve (AUC) of 0.603 on the receiver operating characteristic curve (ROC).ConclusionsThis study showed us that YOLOv5 is nearly perfect for numbering teeth on periapical radiography. Although high success rates were achieved as a result of the study, it should not be forgotten that artificial intelligence currently only can be guides dentists for accurate and rapid diagnosis.Clinical RelevanceIt is thought that dentists can accelerate the radiographic examination time and inexperienced dentists can reduce the error rate by using YOLOv5. Additionally, YOLOv5 can also be used in the education of dentistry students.