Yazar "Basaran, Kemal Erdem" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effects of non-steroidal anti-inflammatory drug (ibuprofen) in low and high dose on stemness and biological characteristics of human dental pulp-derived mesenchymal stem cells(Taylor & Francis Inc, 2023) Salkin, Hasan; Basaran, Kemal ErdemPurpose The effect of ibuprofen, an NSAID, on biological characteristics such as proliferation, viability, DNA damage and cell cycle in dental pulp derived stem cells (DPSCs) can be important for regenerative medicine. Our aim is to investigate how low and high doses of ibuprofen affect stem cell characteristics in DPSCs. Materials and methods DPSCs were isolated from human teeth and characterized by flow cytometry and differentiation tests. Low dose (0.1 mmol/L) and high dose (3 mmol/L) ibuprofen were administered to DPSCs. Surface markers between groups were analyzed by immunofluorescence staining. Membrane depolarization, DNA damage, viability and cell cycle analysis were performed between groups using biological activity test kits. Cellular proliferation was measured by the MTT and cell count kit. Statistical analyzes were performed using GraphPad Prism software. Results High dose ibuprofen significantly increased CD44 and CD73 expression in DPSCs. High-dose ibuprofen significantly reduced mitochondrial membrane depolarization in DPSCs. It was determined that DNA damage in DPSCs decreased significantly with high dose ibuprofen. Parallel to this, cell viability increased significantly in the ibuprofen applied groups. High-dose ibuprofen was found to increase mitotic activity in DPSCs. Proliferation in DPSCs increased in parallel with the increase in mitosis stage because of high-dose ibuprofen administration compared to the control and low-dose ibuprofen groups. Our proliferation findings appeared to support cell cycle analyses. Conclusion High dose ibuprofen improved the immunophenotypes and biological activities of DPSCs. The combination of ibuprofen in the use of DPSCs in regenerative medicine can make stem cell therapy more effective.Öğe Mesenchymal stem cell-derived conditioned medium and Methysergide give rise to crosstalk inhibition of 5-HT2A and 5-HT7 receptors in neuroblastoma cells(Elsevier, 2023) Salkin, Hasan; Satir-Basaran, Guzide; Korkmaz, Seyda; Gonen, Zeynep Burcin; Basaran, Kemal ErdemObjective: (s): We aimed to investigate the effects of mesenchymal stem cell secretome and methysergide com-bination on 5-hydroxytryptamine 2A, (5-HT2AR), 5-hydroxytryptamine 7 (5-HT7R), adenosine 2A (A2AR) re-ceptors and CD73 on neuroblastoma cell line and how they affect biological characteristics. Methysergide was used as a serotonin antagonist on the neuroblastoma cells.Materials and methods: Human dental pulp-derived stem cells (hDPSCs) used to obtain conditioned medium (CM). Methysergide drug was prepared in CM and applied to neuroblastoma cells. Analysis of 5-HT7R, 5-HT2AR, A2AR and CD73 expressions was performed by western blot and immunofluorescence staining. Total apoptosis, mitochondrial membrane depolarization, Ki-67 proliferation test, viability analysis, DNA damage and cell cycle analysis were performed in accordance with the product procedure by using biological activity test kits.Results: Our results showed that neuroblastoma cancer cells are normally on the Gs signaling axis via the sero-tonin 7 receptor and the adenosine 2A receptor. CM and Methysergide inhibited the 5-HT7 and A2A receptor levels in neuroblastoma cells. We found that CM and methysergide formed crosstalk inhibition between 5-HT2AR, 5-HT7R, A2AR and CD73. CM and Methysergide increased the total apoptosis in neuroblastoma cells and induced the mitochondrial membrane depolarization. CM and Methysergide induced the DNA damage and arrested in G0/G1 phase of cell cycle of the neuroblastoma cells.Conclusion: These findings suggest that the combination of CM and methysergite may exert a therapeutic effect on neuroblastoma cancer cells, and future in vivo studies may be important in area of neuroblastoma research to support the findings.