Yazar "Demiralp, Metin" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Probabilistic evolution theory for explicit autonomous ordinary differential equations: recursion of squarified telescope matrices and optimal space extension(Springer, 2018) Gozukirmizi, Cosar; Demiralp, MetinProbabilistic evolution theory facilitates the solution of initial value problem of explicit autonomous ordinary differential equations with second degree multinomial right hand side functions. Its formulation has components we call telescope matrices. The matrices grow in size very rapidly and has many zeroes and repeating structures. In order to avoid the computational complexity coming from telescope matrices, squarified telescope matrices are utilized. Their calculation is through a recursion. This recursion has been used in several works by the authors and their colleagues but its proof was not given. This work gives the proof of the recursion and all the surrounding details. A second purpose of this work is to provide a method for most facilitative (optimal) space extension. Space extension is needed for using probabilistic evolution theory when degree of multinomiality of the right hand side functions is more than two. For this purpose, an approach using method of exhaustion (brute-force) is proposed.Öğe Probabilistic evolution theory for the solution of explicit autonomous ordinary differential equations: squarified telescope matrices(Springer, 2017) Gozukirmizi, Cosar; Kirkin, Melike Ebru; Demiralp, MetinProbabilistic evolution theory (PREVTH) is used for the solution of initial value problems of first order explicit autonomous ordinary differential equation sets with second degree multinomial right hand side functions. It is an approximation method based on Kronecker power series: a rewriting of multivariate Taylor series using matrices having certain flexible parameters. Kronecker power series have matrices which are called telescope matrices: matrices where j is the index of summation. The additive terms of each telescope matrix is formed through Kronecker product from both sides by Kronecker powers of identity matrices. Recently, squarification is proposed in order to avoid the growing of the matrices in size at each additive term of the series. This paper explains the squarification procedure: the procedure used in order to avoid Kronecker multiplications within PREVTH so that the sizes of the matrices do not grow and so that the amount of necessary computation is reduced. The recursion between squarified matrices is also given. As a numerical application, the solution of a H,non-Heiles system is provided.Öğe Solving ODEs by Obtaining Purely Second Degree Multinomials via Branch and Bound with Admissible Heuristic(MDPI, 2019) Gözükırmızı, Coşkun; Demiralp, MetinProbabilistic evolution theory (PREVTH) forms a framework for the solution of explicit ODEs. The purpose of the paper is two-fold: (1) conversion of multinomial right-hand sides of the ODEs to purely second degree multinomial right-hand sides by space extension; (2) decrease the computational burden of probabilistic evolution theory by using the condensed Kronecker product. A first order ODE set with multinomial right-hand side functions may be converted to a first order ODE set with purely second degree multinomial right-hand side functions at the expense of an increase in the number of equations and unknowns. Obtaining purely second degree multinomial right-hand side functions is important because the solution of such equation set may be approximated by probabilistic evolution theory. A recent article by the authors states that the ODE set with the smallest number of unknowns can be found by searching. This paper gives the details of a way to search for the optimal space extension. As for the second purpose of the paper, the computational burden can be reduced by considering the properties of the Kronecker product of vectors and how the Kronecker product appears within the recursion of PREVTH: as a Cauchy product structure.Öğe Weighted tridiagonal matrix enhanced multivariance products representation (WTMEMPR) for decomposition of multiway arrays: applications on certain chemical system data sets(Springer, 2017) Ozay, Evrim Korkmaz; Demiralp, MetinThis work focuses on the utilization of a very recently developed decomposition method, weighted tridiagonal matrix enhanced multivariance products representation (WTMEMPR) which can be equivalently used on continuous functions, and, multiway arrays after appropriate unfoldings. This recursive method has been constructed on the Bivariate EMPR and the remainder term of each step therein has been expanded into EMPR from step to step until no remainder term appears in one of the consecutive steps. The resulting expansion can also be expressed in a three factor product representation whose core factor is a tridiagonal matrix. The basic difference and novelty here is the non-constant weight utilization and the applications on certain chemical system data sets to show the efficiency of the WTMEMPR truncation approximants.