Blasco, OscarOsancliol, Alen2024-03-132024-03-1320190025-584X1522-2616https://doi.org/10.1002/mana.201800551https://hdl.handle.net/20.500.12662/3456Let phi(1),phi(2) and phi(3) be Young functions and let L-phi 1(R), L-phi 2(R) and L-phi 3(R) be the corresponding Orlicz spaces. We say that a function m(xi,eta) defined on RxR is a bilinear multiplier of type (phi(1),phi(2),phi(3)) if Bm(f,g)(x)=integral(R)integral(R)f(xi)g(eta)m(xi,eta)e(2 pi i(xi+eta)x)d xi d eta defines a bounded bilinear operator from L-phi 1(R)xL(phi 2)(R) to L-phi 3(R). We denote by BM(phi(1),phi(2),phi(3))(R) the space of all bilinear multipliers of type (phi(1),phi(2),phi(3)) and investigate some properties of such a class. Under some conditions on the triple (phi(1),phi(2),phi(3)) we give some examples of bilinear multipliers of type (phi(1),phi(2),phi(3)). We will focus on the case m(xi,eta)=M(xi-eta) and get necessary conditions on (phi(1),phi(2),phi(3)) to get non-trivial multipliers in this class. In particular we recover some of the known results for Lebesgue spaces.eninfo:eu-repo/semantics/openAccessbilinear multipliersOrlicz spacesNotes on bilinear multipliers on Orlicz spacesArticle10.1002/mana.2018005512-s2.0-85071582353253612Q22522292WOS:000484625400001Q2