Notes on bilinear multipliers on Orlicz spaces
Küçük Resim Yok
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Wiley-V C H Verlag Gmbh
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Let phi(1),phi(2) and phi(3) be Young functions and let L-phi 1(R), L-phi 2(R) and L-phi 3(R) be the corresponding Orlicz spaces. We say that a function m(xi,eta) defined on RxR is a bilinear multiplier of type (phi(1),phi(2),phi(3)) if Bm(f,g)(x)=integral(R)integral(R)f(xi)g(eta)m(xi,eta)e(2 pi i(xi+eta)x)d xi d eta defines a bounded bilinear operator from L-phi 1(R)xL(phi 2)(R) to L-phi 3(R). We denote by BM(phi(1),phi(2),phi(3))(R) the space of all bilinear multipliers of type (phi(1),phi(2),phi(3)) and investigate some properties of such a class. Under some conditions on the triple (phi(1),phi(2),phi(3)) we give some examples of bilinear multipliers of type (phi(1),phi(2),phi(3)). We will focus on the case m(xi,eta)=M(xi-eta) and get necessary conditions on (phi(1),phi(2),phi(3)) to get non-trivial multipliers in this class. In particular we recover some of the known results for Lebesgue spaces.
Açıklama
Anahtar Kelimeler
bilinear multipliers, Orlicz spaces
Kaynak
Mathematische Nachrichten
WoS Q Değeri
Q2
Scopus Q Değeri
Q2
Cilt
292
Sayı
12