(?1b?, ?2b?, ?3b?) Linear Codes Over GF(2)
Yükleniyor...
Tarih
2009
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Beykent Üniversitesi
Erişim Hakkı
Özet
This paper explores the possibilities of the existence of block-wise burst error correcting (n,k) linear codes over GF(2) (Galois field of two elements ,0 and 1) that can correct all bursts of length b? (fixed) in the first n? components , all bursts of length b? (fixed) in the next n? components and all bursts of length b? (fixed) in the last n? components; n = n1+ n2 +n3. Such codes are named as (?1b?, ?2b?, ?3b?) linear codes. Some of these codes turn out to be byte oriented[7].
Açıklama
Anahtar Kelimeler
(ⁿ1b₁, ⁿ2b₂, ⁿ3b₃) code, burst of length b(fixed), parity check matrix, error pattern syndrome- table, byte oriented codes
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Journal of Science and Technology 3 (2), 2009, 301 – 319