Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Physical Soc

Access Rights

info:eu-repo/semantics/openAccess

Abstract

A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the ve component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section a(Ev) for charged-current ve absorption on argon. In the context of a simulated extraction of supernova ve spectral parameters from a toy analysis, we investigate the impact of a(Ev) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on a(Ev) must be substantially reduced before the ve flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires a(Ev) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of a(Ev). A direct measurement of low-energy ve-argon scattering would be invaluable for improving the theoretical precision to the needed level.

Description

Keywords

Journal or Series

Physical Review D

WoS Q Value

Q1

Scopus Q Value

Q1

Volume

107

Issue

11

Citation